
Wii Remote 

Strategies and Algorithms

Steve Rabin

Senior Software Engineer

Software Development Support Group



Agenda

• Pointer functionality

• Accelerometers
– Understanding accelerometers

– Gesture recognition algorithms
• Wii Sports case study

– Steering



3D Pointing: Targeting

• Aiming or Choosing
– Onscreen feedback required

• Hand Shakiness is an Issue
– Use KPAD smoothing

– Find ideal settings with "kpadsample" in SDK

– KPADSetPosParam(chan, play, sensitivity);
• <play> should be between 0 and 0.05 (full range [0,1])



3D Pointing:

Distance/Twisting/Gestures

• Distance
– Absolute distance can be computed

• But only use relative distance

– Could use distance to zoom

– Smooth with KPADSetDistParam()

• Twisting
– Smooth with KPADSetHoriParam()

– Could also use accelerometer

• Gestures
– Drawing symbols for spell casting

– Use directional flicks to augment actions



Accelerometers

+/-3.4G

+/-2.1G

Nunchuk

Wii Remote



Understanding

Accelerometers 

1. Gravity is a force 

• (an acceleration)

2. Start and stop sweep movement

• x-axis: Acceleration followed by deceleration

• y-axis: Only affected by gravity

• z-axis: Arm imparts a centripetal force on remote

3. Simulated drum hit

• x-axis: Not affected much

• y-axis: Gravity + acceleration/deceleration

• z-axis: Centripetal force

x

z
y



Accelerometer

Lessons 

• Acceleration ≠ velocity ≠ position

• Accelerometers always detect gravity

• Movement creates acceleration and deceleration

• Accelerometers detect change in velocity

– Constant speed = no acceleration!

• Some rotations can't be detected by accelerometers

• Accelerometers are amazingly accurate & precise

– Hand shakiness needs to be dealt with

x

z
y



Accelerometer Applications

Gesturing Steering



Accelerometers:

Advice for Designing Gestures

• Don't wear out the player
– Keep frequency/duration of vigorous gestures low

• Common issues 
– Missed recognition

• Not sensitive enough

• Player not holding controller correctly

– Incorrect recognition
• Gestures are too similar to each other

• Use more context sensitive gestures

– False positives
• Expected gesture is too subtle or too similar to gravity

• Use context sensitive gestures



Accelerometers: 

Difficult to Track 3D Position

• Accelerometers measure acceleration 
– Not velocity or position

– But, double integral of acceleration is position!

• Difficult to decouple gravity from movement
– People hold controller differently

– Orientation changes over duration of movement

– Complicated algorithms can make educated 
guesses at the influence of gravity

– Error makes this extremely difficult

• No known method to reliably track position 
only with accelerometers



Preprocess Signal to 

Estimate True Magnitude

• Wii Remote detects +/-3.4G

– Easy to max out acceleration

-3.4G

3.4G



Preprocess Signal to 

Estimate True Magnitude

• Wii Remote detects +/-3.4G

– Easy to max out acceleration

-3.4G

3.4G



Preprocess Signal to 

Estimate True Magnitude

• Use spline to estimate actual magnitude

– Hermite spline (C1 continuity)

– Bezier spline (C2 continuity)

-3.4G

3.4G



Preprocess Signal to 

Estimate True Magnitude

• Use spline to estimate actual magnitude

– Hermite spline (C1 continuity)

– Bezier spline (C2 continuity)

-3.4G

3.4G



Preprocess Signal to 

Estimate True Magnitude

• Use spline to estimate actual magnitude

– Hermite spline (C1 continuity)

– Bezier spline (C2 continuity)

-3.4G

3.4G



Preprocess Signal to 

Estimate True Magnitude

• Might need to estimate as data comes in

– Requires predicting end control point

-3.4G

3.4G



Preprocess Signal to 

Estimate True Magnitude

• Might need to estimate as data comes in

– Requires predicting end control point

-3.4G

3.4G



Preprocess Signal to 

Estimate True Magnitude

• Might need to estimate as data comes in

– Requires predicting end control point

-3.4G

3.4G



Detecting when Gestures

Begin and End

• Player presses/releases button

– Example: Drawing in the air

• Use centripetal force as a proxy

– Moves cause centripetal force

• Arm pivots at shoulder

• Hand pivots at wrist

– About 1.2G is a good threshold

• Ignores non-gestures

z ~1.2G

Threshold



Accelerometer Gesture Recognition:

Simple vs Complex

Multi-axisAxis-aligned



Accelerometer Gesture Recognition:

Simple Motion

• Axis-aligned

• Short duration

• Easy to detect

x-axis aligned

Wrist flick

x-axis aligned

Large arm movement

y-axis 

aligned



Accelerometer Gesture Recognition:

Complex Motion

• Multi-axis

• Longer duration

• Difficult to detect 100%

Multi-axis



Gesture Recognition:
Simple Motion—Hits, Swipes, and Stabs

• These movements are axis-aligned

– Easy to detect (using thresholds)

– Natural player movement, simple to do

x

z

z

y



Gesture Recognition:
Simple Motion—Drum Hit Case Study

• Two aspects

– Detect moment of impact

– Detect strength of impact

y-axis
z-axis



Gesture Recognition:
Simple Motion—Drum Hit Case Study

• Detect moment of impact

– 0.5G "Prep" threshold will figuratively "cock trigger"

y-axis

Moment of impact

Prep

y-axis

-1.3G

0.5G



Gesture Recognition:
Simple Motion—Drum Hit Case Study

• Detect moment of impact

– 0.5G "Prep" threshold will figuratively "cock trigger"

– Once ready, -1.3G threshold represents moment of impact

y-axis

Moment of impact

Prep

y-axis

-1.3G

0.5G



Gesture Recognition:
Simple Motion—Drum Hit Case Study

• Detect strength of impact

– Construct window between "prep" time and "impact" time

– Within window, integrate positive acceleration on z-axis

Moment of impact

Prep

y-axis

-1.3G

0.5G

z-axis

Area = Velocity

z-axis

Centripetal

Force



Complex Gesture Recognition:

Five Techniques



Complex Gesture Recognition:

Preprocessing the Signal

• Example from handwriting recognition

– Normalize size

– Normalize length/speed



Complex Gesture Recognition:

First Step—Preprocessing

Massage input to look consistent/uniform

Raw Step 1 Step 2,3 Step 4



Complex Gesture Recognition:

First Step—Preprocessing

Massage input to look consistent/uniform

1. (optional) Remove gravity from all axes

• Gravity problematic

• Removes small movement noise

Raw Step 1 Step 2,3 Step 4



Complex Gesture Recognition:

First Step—Preprocessing

Massage input to look consistent/uniform

1. (optional) Remove gravity from all axes

• Gravity problematic

• Removes small movement noise

2. Remove parts with no acceleration

3. Normalize length

Raw Step 1 Step 2,3 Step 4



Complex Gesture Recognition:

First Step—Preprocessing

Massage input to look consistent/uniform

1. (optional) Remove gravity from all axes

• Gravity problematic

• Removes small movement noise

2. Remove parts with no acceleration

3. Normalize length

4. Normalize intensity

Raw Step 1 Step 2,3 Step 4



Complex Gesture Recognition:

Technique 1—Nearest Neighbor

• Compare player input to database of examples

Swing Left 1 Swing Left 2 Swing Left 3 Swing Right 3Swing Right 2Swing Right 1

Player Swing



Complex Gesture Recognition:

Technique 1—Nearest Neighbor

• Compare player input to database of examples

• Lowest error is match

Swing Left 1 Swing Left 2 Swing Left 3 Swing Right 3Swing Right 2Swing Right 1

Player Swing

2
1

0

4 4
5



Complex Gesture Recognition:

Technique 1—Nearest Neighbor

• Compare player input to database of examples

• Lowest error is match

Swing Left 1 Swing Left 2 Swing Left 3 Swing Right 3Swing Right 2Swing Right 1

Player Swing

0

0

0
1

6
7 7



Complex Gesture Recognition:

Technique 1—Nearest Neighbor

• Compare player input to database of examples

• Lowest error is match

Swing Left 1 Swing Left 2 Swing Left 3 Swing Right 3Swing Right 2Swing Right 1

Player Swing

3

1
0

5
4

3



Complex Gesture Recognition:

Technique 1—Nearest Neighbor

• Compare player input to database of examples

• Lowest error is match

Swing Left 1 Swing Left 2 Swing Left 3 Swing Right 3Swing Right 2Swing Right 1

Player Swing

2

0

3

2

2
1 0

1

1

0
1
1

2
1

1

1

0

1

0

3
0

1 0
1 4

6
5

2

5

7
7

4

4

7
4

0

7
6

4
3

5
7

3

2
7

8
6

4

Error = 11 Error = 8 Error = 6 Error = 40 Error = 35 Error = 42



Complex Gesture Recognition:

Technique 1—Nearest Neighbor

• Compare player input to database of examples

• Lowest error is match

Swing Left 1 Swing Left 2 Swing Left 3 Swing Right 3Swing Right 2Swing Right 1

Player Swing

2

0

3

2

2
1 0

1

1

0
1

1

2
1

1

1

0

1

0

3
0

1 0
1 4

6
5

2

5

7
7

4

4

7
4

0

7
6

4
3

5
7

3

2
7

8
6

4

Error = 11 Error = 8 Error = 6 Error = 40 Error = 35 Error = 42



Complex Gesture Recognition:

Technique 1—Nearest Neighbor

• Compare player input to database of examples

• Lowest error is match (ROOT MEAN SQUARE!)

Swing Left 1 Swing Left 2 Swing Left 3 Swing Right 3Swing Right 2Swing Right 1

Player Swing

4

0

9

4

4
1 0

1

1

0
1

1

4
1

1

1

0

1

0

9
0

1 0
1

16

36

25

4

25

49

49

16

16

49

16

0

49

36

16

9

25

49

9

4
49

64

36

16

Error = 23 Error = 10 Error = 12 Error = 195 Error = 191 Error = 203



Complex Gesture Recognition:

Technique 1—Nearest Neighbor

• Compare player input to database of examples

• Lowest error is match (ROOT MEAN SQUARE!)

Swing Left 1 Swing Left 2 Swing Left 3 Swing Right 3Swing Right 2Swing Right 1

Player Swing

4

0

9

4

4
1 0

1

1

0
1

1

4
1

1

1

0

1

0

9
0

1 0
1

16

36

25

4

25

49

49

16

16

49

16

0

49

36

16

9

25

49

9

4
49

64

36

16

Error = 23 Error = 10 Error = 12 Error = 195 Error = 191 Error = 203



Complex Gesture Recognition:

Technique 1—Nearest Neighbor

• Compare player input to database of examples

• Lowest error is match

Swing Left 1 Swing Left 2 Swing Left 3 Swing Right 3Swing Right 2Swing Right 1

Player Swing

0

4
16

25

4
1

16

4

1

4
4

16

4
1

25

4

4

9

1

0
0

1
16

4 4
16

16

1

25

25

9

1

4

25

9

9

49

16

0
0

9
25

4

25

49

36

4

1

Error = 70 Error = 59 Error = 35 Error = 97 Error = 112 Error = 153



Complex Gesture Recognition:

Technique 1—Nearest Neighbor

• Compare player input to database of examples

• Lowest error is match

• Large error = no match

Swing Left 1 Swing Left 2 Swing Left 3 Swing Right 3Swing Right 2Swing Right 1

Player Swing

0

4
16

25

4
1

16

4

1

4
4

16

4
1

25

4

4

9

1

0
0

1
16

4 4
16

16

1

25

25

9

1

4

25

9

9

49

16

0
0

9
25

4

25

49

36

4

1

Error = 70 Error = 59 Error = 35 Error = 97 Error = 112 Error = 153



Complex Gesture Recognition:

Technique 1—Nearest Neighbor

• General algorithm to match against database

– Not many examples needed

– Preprocess data for best matching

• Can constantly monitor input stream

• Player could supply examples



Complex Gesture Recognition:

Technique 2—Neural Network

• Black box that tells you the answer

• You train it with 100s or 1000s of examples
– Network generalizes to examples

Gesture 1

Gesture 2

Gesture 3

Input 1

Input 2

Input 3

Input 4

Input 5

Input 6

Hidden Layer



Complex Gesture Recognition:

Technique 3—Cheat

• Adapt a complex gesture into a series 

of simple gestures

• Sequences of axis-aligned movements

– Easier to detect 

– Train the player



Complex Gesture Recognition:
Technique 4—LiveMove Middleware

www.ailive.net

support@ailive.net



Complex Gesture Recognition:

Technique 5—Use your Brain

1. Study the move(s) you want to detect

2. Identify its features
• Is there a single feature that is unique?

• Is it consistent no matter who does the gesture?

3. Write custom detection code for the single gesture
• Various threshold tests in sequence

• Threshold triggering relative to other axes

4. Discern the differences between two gestures
• In cases where it's one or the other



Complex Gesture Recognition:
Wii Sports Tennis Case Study

• Recognize any swing

• Recognize left or right swing

• Recognize topspin, backspin, no spin

• Recognize underhand or overhand

• Recognize hard or soft hit 



Complex Gesture Recognition:
Recognize Swing

• Threshold on z-axis

– Something like 1.2G to 1.5G

z-axisz-axis

Threshold



Complex Gesture Recognition:
Left or Right Swing

x

y

x

y

Right Swing

(clockwise)

Left Swing

(counterclockwise)



Complex Gesture Recognition:
Left or Right Swing

• Orientation of controller doesn't matter!

• Increase recognition:

– Predict correct swing

– Make incorrect swings require larger threshold

• Avoids mistaking "prep" as swing



Complex Gesture Recognition:
Topspin, No Spin, or Backspin

x

y

x

y

No SpinTopspin

x

y

Backspin



Complex Gesture Recognition:
Underhand or Overhand

• Look at z-axis before swing

– Negative = Overhand

– Positive = Underhand

z-axisz-axis
Overhand

Underhand



Complex Gesture Recognition:
Hard Hit or Soft Hit

Acceleration

Jerk

Position

Change in Position

Change in Acceleration

Velocity

Change in Velocity



Complex Gesture Recognition:
Hard Hit or Soft Hit

Soft Hit

(low jerk)

Hard Hit

(high jerk)

x

y

x

y



Complex Gesture Recognition:
Hard Hit or Soft Hit

• Jerk is loosely correlated with swing speed

– Slow swing will generally have less jerk

– Fast swing will generally have more jerk

• However, using this method

– Quick wrist snap results in highest jerk

– Hard fast arm swing doesn't result in high jerk

• If you want the hardest hit in Wii Sports Tennis

– Snap your wrist quickly to create a large acceleration 
followed by a large deceleration (don't swing your arm hard)

– You don't need to swing your arm hard



Complex Gesture Recognition:
Wii Sports Tennis Timeline

• Sequence of events during a swing and hit

net



Complex Gesture Recognition:
Wii Sports Tennis Timeline

• Time A: Swing started by player

net

Time

Swing Gesture

A



Complex Gesture Recognition: 
Wii Sports Tennis Timeline

• Time B: Detect left or right swing

net

Time

Swing Gesture

A B



Complex Gesture Recognition:
Wii Sports Tennis Timeline

• Time B: Detect underhand or overhand

net

Time

Swing Gesture

A B



Complex Gesture Recognition:
Wii Sports Tennis Timeline

• Time B: Start animation (left/right, over/under)

net

Time

Swing Gesture

A B

Animation



Complex Gesture Recognition:
Wii Sports Tennis Timeline

• Time C: Racket collides with ball

net

Time

Swing Gesture

Animation

Ball Hit
BA C



Complex Gesture Recognition:
Wii Sports Tennis Timeline

• Time D: Velocity and spin recognized

net

Time

Swing Gesture

Animation

Ball Hit
B DA C



Complex Gesture Recognition:
Wii Sports Tennis Timeline

• High velocity and backspin

Ball Hit

net



Complex Gesture Recognition:
Wii Sports Tennis Timeline

• Average speed with no spin

Ball Hit

net



Complex Gesture Recognition:
Wii Sports Tennis Timeline

• Velocity and spin are detected late

Recognition Complete

net



Complex Gesture Recognition:
Wii Sports Tennis Timeline

• Interpolate ball to desired trajectory

Recognition Complete

net



Accelerometer Applications:

Steering



Steering and Rotating

• Robust and reliable

• Various orientations

– Sideways

– Paper airplane

– Flight stick



Steering and Rotating:

Desired Angles

0˚̊̊̊

90˚̊̊̊-90˚̊̊̊

45˚̊̊̊-45˚̊̊̊



Steering and Rotating:

Desired Angles

0˚̊̊̊

90˚̊̊̊-90˚̊̊̊

45˚̊̊̊-45˚̊̊̊



Steering and Rotating:

Desired Angles

0˚̊̊̊

90˚̊̊̊-90˚̊̊̊

45˚̊̊̊-45˚̊̊̊



Steering and Rotating:

Desired Angles

0˚̊̊̊

90˚̊̊̊-90˚̊̊̊

45˚̊̊̊-45˚̊̊̊



Steering and Rotating:

Angle Conversion

• Wrong way

– Multiply z-axis by 90 degrees

0˚̊̊̊

90909090˚̊̊̊

45˚̊̊̊

0˚̊̊̊

90˚̊̊̊

45˚̊̊̊



Steering and Rotating:

Angle Conversion

• Wrong way (multiply z-axis by 90 degrees)

– Close, but causes "swerving" near zero degrees

0˚̊̊̊

90˚̊̊̊

45˚̊̊̊

0˚̊̊̊

90˚̊̊̊

45˚̊̊̊

64˚̊̊̊

15˚̊̊̊



Steering and Rotating:

Angle Conversion

• Correct Way

– Use trigonometry (sin or cos)



Steering and Rotating:

Trigonometry Visualization

G (gravity)



Steering and Rotating:

Trigonometry Visualization

y-axis

z-axis



Steering and Rotating:

Trigonometry Visualization

y-axis

z-axis

G (gravity)



Steering and Rotating:

Trigonometry Visualization

y-axis

z-axis

22 erationzAxisAccelerationyAxisAccelG +=

G (gravity)



Steering and Rotating:

Trigonometry Visualization

y-axis

z-axis

G (gravity) ≠ 1.0!

x-axis

22 erationzAxisAccelerationyAxisAccelG +=



Steering and Rotating:

Trigonometry Visualization

y-axis

z-axis
G (gravity)

θ



Steering and Rotating:

Trigonometry Visualization

y-axis

z-axis
G (gravity)

22 erationzAxisAccelerationyAxisAccel

erationzAxisAccel

hypotenuse

opposite
)sin(

+

==θ

θ



Steering and Rotating:

Trigonometry Visualization

y-axis

z-axis
G (gravity)

θ















+

=
22 erationzAxisAccelerationyAxisAccel

erationzAxisAccel
arcsinθ



Avoiding Jitter in Steering

• Player's hands are shaky

– Smooth out accelerometer data

– KPADSetAccelParam(chan, play, sensitivity);

• <play> should be between 0 and 0.05



WPAD vs KPAD

• WPAD

– Low level

– y-axis is forwards

– No smoothing

• KPAD

– High level

– z-axis is forwards

– Offers smoothing

x

z
y

x

y
z



Pointing Summary

• Perfect for aiming or selecting

• Capable of 
– 2D position

– Distance

– Twisting

• Use KPAD library to smooth
– 2D position

– Horizontal (twisting)

– Distance



Accelerometer Summary

• Gesture recognition

– Simple vs Complex

• Complex takes more development effort and tuning

• Complex harder to achieve 100% accuracy

• Try to discern between two options - use your brain!

– Adapt game design to make gesture recognition robust

– Make use of velocity

• Steering

– Remember to use trigonometry

– Swerving is a sign that it was implemented wrong

– Use KPAD to smooth values



Questions?

Ask me during the reception/breaks

Or e-mail support@noa.com


